Part [:

Self-generating Programs — Cascade of the Blocks

Part II:

State Machine Abstraction Layer

Josef Kufner

kufnejos@fel.cvut.cz

April 2014

Part |

Self-generating Programs — Cascade
of the Blocks

Connecting components together

> Unix pipeline: (Douglas Mcllroy, 1964/1973)

cat | grep | sort | sed

Isolated programs

Uniform interfaces — input and output (stdio)
Single data stream

Static structure

vV vy vy

Connecting components together

» Function Blocks:

vV vy vy VvYy

Y

|

Isolated blocks

Uniform interfaces — inputs and outputs

Multiple data streams
Static structure
Feedback is possible

[
1)

(IEC 61131, 1992)

What if ...

Data streams + Static structure

What if ...

Data streams + Static structure

{

Static data + Dynamic structure

Static data + Dynamic structure =7

» Preserved features:

> Isolated blocks
» Uniform interfaces — inputs and outputs

Static data + Dynamic structure =7

» Preserved features:

> Isolated blocks
» Uniform interfaces — inputs and outputs

» Static data?

» Outputs can be set only once.
» Inputs receive only a single value or an object.

Static data + Dynamic structure =7

» Preserved features:

> Isolated blocks
» Uniform interfaces — inputs and outputs

» Static data?

» Outputs can be set only once.
» Inputs receive only a single value or an object.

» Dynamic structure?

» Blocks are created during evaluation.
» New blocks may be connected to the current structure.

The Cascade

» The Cascade is a dynamic acyclic structure built of blocks.

update
article/update
+id done
article
get load enable
core/in/get article/load form
id id id article/edit_form
enable article article article show_form
done enable form form/show
done form done
tenable (:not)

> Values are passed from outputs of one block to inputs of another.
The data are transferred as a single wave — no streams.

Evaluation of the Cascade

» Connections between blocks = Precedence constraints.
» Output must be set before input is read.
» Execution order is determined automatically.

» Programmer does not have to specify it explicitly — less work,
more flexible cascade constructing.

update
article/update
tid done
article
o Toad enable
core/in/get article/load form
id id id article/edit_form
enable article article article show form
done nable form form/show
done form done
enable (:not)
g=<g =<l ...,g=<lI<ul<ff<uf<s

— g<B<I<I<f<f<u<T<s<53

The Block

> Block is an OOP object with
main() method.

> Type (class)

> ID of the instance D
» Life time of the block: block/type
1. Read inputs. a X
2. Process data. b y
3. Set outputs. z
» Strict encapsulation: note or error

Blocks do not know their connections.

» Similar to Function block, but semantics is
different.

The Growing Cascade

» Blocks can insert additional blocks and connect their inputs.

Before execution of A: After:
CCT T T T A T T T CC T T T T A T T T
! | ! I
I I D I B c I D
I — 1 linl out ! inl out in1 out | in1 out
! I in2 ! in2 $in2 | in2
! | ! I
A A
inl out inl out
in2 in2
A<D

(connection into namespace of A)

Namespaces

» Each block can insert blocks into its own namespace only.
» Connections can be established across all namespaces.

» Recursive nesting is allowed. — The cascade is a 3D structure.

in2 in2

tinl out inl out7

A
inl outl
in2 out2

Block A inserted blocks B and C, and requested forward of the Cs output.

Output

forwarding

» Return value replacement — nothing is going back in the cascade.

>

Actual

A
inl outl
in2 out2

Scope of forwarding is not limited by namespace.

cascade: Idea of nesting:

Block A inserted blocks B and C, and requested forward of the C’s output.

Cascade features

» Automated visualization:

» Cascade snapshot represents the entire previous evaluation.
» Easy to render automatically using Graphviz.
» Debugger in a single picture.

Cascade features

» Automated visualization:

» Cascade snapshot represents the entire previous evaluation.
» Easy to render automatically using Graphviz.
» Debugger in a single picture.

» Data flow orientation:

» Modelling data paths instead of data types or algorithms.
» Cascade says what happens to data, not how.
> Details are contained in blocks.

Cascade features

» Automated visualization:

» Cascade snapshot represents the entire previous evaluation.
» Easy to render automatically using Graphviz.
» Debugger in a single picture.

» Data flow orientation:

» Modelling data paths instead of data types or algorithms.
» Cascade says what happens to data, not how.
> Details are contained in blocks.

» Strict block encapsulation and unified AP

Block can be replaced, cascade reconfigured.

Any input can be connected to any output (if it makes sense).
Higher code reusability. Limited scope for bugs.

Side-effects

vV vy vy

Cascade composition

» Cascade is:

» simple data structure
» declarative
» machine-friendly

Cascade composition

» Cascade is:

» simple data structure
> declarative
» machine-friendly

» Cascade is designed to be generated on-the-fly.
» Ready for sophisticated composition mechanisms.

» More in Part Il.

Cascade usage

» Designed for non-interactive applications.
» HTTP server:

One HTTP request = one cascade evaluation.

Cascade usage

» Designed for non-interactive applications.
» HTTP server:

One HTTP request = one cascade evaluation.

> It is hard to implement cycles.

» Usualy not required in real applications.
» Pass lists and iterators between blocks to process collections.

Use Case: Web Framework

» Cascade was created as a core of a web framework.

» Cascade replaced a traditional controller in MVC.

» Blocks can produce output fragments, which are composed into a
web page after the cascade evaluation is finished.

>

Config.
files

HTTP
request

Push architecture.

—> Front Controller
Cascade
Templating
) wl engine
(View)

—>

HTTP
response
(HTML page)

Framework Features

v

Real-time fully automatic cascade visualization:

» Every web page can contain an automatically generated diagram
of the cascade which generated the page (Graphviz).
» Easy to trace where data come from and what happened to them.

Visual cascade editor

v

» User-friendly web application composition — both logic and layout.

v

Plugin infrastructure

» Plugin is a library of blocks + config.
» Cood code reusability (prototypes).

Generated block documentation

v

» Fully integrated into an application.
> Less code to remember.

Movie

» Automaticaly generated movie !
» Shows how the cascade is evaluated.

» Silent movie only. Sorry.

Movie — the result

ADMINISTRATION

Dashboard
DOCUMENTATION Bl
Developer's manual
smalldb machines
Block reference
Doxygen docs
DEVELOPMENT
Block editor
DUF sandbox
JSON Database
Profiler statistics
Version

v0.0-61-g2590db6

ello Profiler Administration

ock Editor

« List | Block: [skeleton

|| save || Detete

skeleton
core/outipage

css link done

[

htmi_head

corefoutiraw

slot.

slot_weight
data
nable

slot_header

corelout/siot

slot name
slot_weiaht done

stered in json, last modified at 2014-01-22 14:30:52

Current Research

» Automatic cascade composition from incomplete specification.

» Combining existing implementations, relevant metadata, and
various forms of user input to generate a new implementation.

» Cascade is designed for automated processing:

» Simple data structures.
» Everything is declarative and machine-friendly.

Software SN Trained N Framework
Analyst Monkey (PHP)

Customer «—

To be replaced.

End of Part |

Josef Kufner
kufnejos@fel.cvut.cz

Framework demo:
http://cascade.frozen-doe.net/

Comming soon: Magic vs. Trained monkeys

http://cascade.frozen-doe.net/

Part |l

State Machine Abstraction Layer

The Big Picture

Model definition

Smalldb

Single
User Interface ~ Magic «| web page
definition 7~ ?2??
Cascade

Existing programs
?2??

\ Future research

What is Smalldb?

» Smalldb is a framework for creating models in MVC-like
applications.

» But it is not only a model.

» Smalldb is RESTful.
» But a little different from usual REST applications with HTTP API.

» Smalldb use state machines to describe the model ...

REST Resource as a State Machine

modify
(HTTP PUT)

create delete

. (HTTP POST) @ (HTTP DELETE) =@

REST Resource as a State Machine

modify
(HTTP PUT)

create delete

. (HTTP POST) @ (HTTP DELETE) =@

» How to undelete a resource?

» How to manage long-running tasks?

REST Resource as a State Machine

modify
(HTTP PUT)

create delete

. (HTTP POST) @ (HTTP DELETE) =@

» How to undelete a resource?

» How to manage long-running tasks?

» What if we add more transitions?

Example: An article in a content management system

create

publish

undelete

published) edit

delete

undelete

REST API for Smalldb

» Required operations:

1. Read state (HTTP GET)
2. Invoke a transition (HTTP POST)

> transition name
> parameters

REST API for Smalldb

» Required operations:

1. Read state (HTTP GET)
2. Invoke a transition (HTTP POST)

> transition name
> parameters

» REST is not only HTTP API.

» Uniform interface — Resources, URL
» Hypermedia — Resources linking to each other.
» Stateless communication

REST API for Smalldb

v

Required operations:

1. Read state (HTTP GET)
2. Invoke a transition (HTTP POST)

> transition name
> parameters

v

REST is not only HTTP API.

» Uniform interface — Resources, URL
» Hypermedia — Resources linking to each other.
» Stateless communication

v

Smalldb preserves REST features.

v

Compatible with good old HTML forms.

» No complex clients needed.

Example: An article in a content management system

publish

published ' edit undelete

delete undelete

» What self-loops do?

Finite automaton + Kripke structure

> Self-loops may change the state!

Finite automaton + Kripke structure

» Self-loops may change the state!

» State machine has properties (key—value).

» State is function of the properties.

Finite automaton + Kripke structure

v

Self-loops may change the state!

v

State machine has properties (key—value).

v

State is function of the properties.

v

Self-loop is transition between sub-states within the state.

Definition of Smalldb State Machine ... see the paper.

Smalldb state machine is modified non-deterministic parametric finite automaton,
defined as a tuple (Q, P, s, Py, L, A\, M, @, 0), where:
> @ is finite set of states.

> P is set of named properties. P* is (possibly infinite) set of all possible values
of P. Py is state of these properties in time t. P, € P*.

s is state function s(P;) — g, where g € Q, P € P*.
Py is set of initial values of properties P, Py € P*.
L is set of parametrized input events.

N is set of parametrized output events (optional).

vV VY VY VY

M is finite set of methods: m(Px, ein) — (Pts1, €out), Where Py, Peyq € P,
me Mr €in € Zr €out € A.

>« is assertion function: a(gs, m) — Q:y1, where g: € Q, Qi1 C Q, €, € L.
Vm & M : s(Pti1) € a(s(P:), m) & (Jein : m(Py, €in) — (Pei1, €out))

> 0 is transition function: 9(qy, €jn, u) — m, where q; € Q, e;, €L, m € M,
and u represents current user’s permissions and/or other session-related
attributes.

Key features of Smalldb State Machine (1/2)

» Nondeterministic parametric finite automaton.

Key features of Smalldb State Machine (1/2)

» Nondeterministic parametric finite automaton.

» ... finite automaton

» Finite set of states and transitions.
» Single initial state.

Key features of Smalldb State Machine (1/2)

» Nondeterministic parametric finite automaton.

» ... finite automaton

» Finite set of states and transitions.
» Single initial state.

> ... parametric ...

» State is a function of named properties (key—value structure).
» State function is one-way mapping.

Key features of Smalldb State Machine (1/2)

v

Nondeterministic parametric finite automaton.

... finite automaton

v

» Finite set of states and transitions.
» Single initial state.

> ... parametric ...

» State is a function of named properties (key—value structure).
» State function is one-way mapping.

Nondeterministic ...

v

» Multiple transition of the same name.
» Transition may fail, or it depends on unknown variables.
» Equivalent to deterministic automaton with guards.

Correctness and Provability

» Smalldb separates formally provable definition and a messy code
with transition implementations.

Correctness and Provability

» Smalldb separates formally provable definition and a messy code
with transition implementations.

» Formal model (state machine definition) is part of implementation.

» Almost no space for mistakes while converting formal model to
a real code.

Correctness and Provability

» Smalldb separates formally provable definition and a messy code
with transition implementations.

» Formal model (state machine definition) is part of implementation.

» Almost no space for mistakes while converting formal model to
a real code.

» Easy to visualize.

» Graphviz (again)

» Costumer may understand state diagram and confirm validity.
(No chance to do so with source code))

» Easier for new programmers to start working on an old code.

Key features of Smalldb State Machine (2/2)

» Implementation of a transition?

Key features of Smalldb State Machine (2/2)

> |Implementation of a transition?

» Transition is implemented in code as OOP method.

» State machine validates a state after a transition is finished
using assertion function.

Key features of Smalldb State Machine (2/2)

v

Implementation of a transition?

v

Transition is implemented in code as OOP method.

v

State machine validates a state after a transition is finished
using assertion function.

v

Messy code is packed and supervised.

v

Machine implementation is well tested.

v

Machine definition can be formally verified.

What could go wrong?

Metadata

» State machine definition can be easily extended with related
metadata.

» Convenient ,Single Source of Truth”

Metadata

v

State machine definition can be easily extended with related
metadata.

v

Convenient ,Single Source of Truth”

v

Parts of application may be generated from these metadata.

» User interface, ...

v

Access control — per transition.

Interaction with outter world

» Cooperating state machines can be modeled and formally verified.

» Other entities in a bussiness process may be modeled as a state
machines too.

» Possibility to formally verify entire bussiness process.

Future research

» Smalldb was created as a source of metadata for the ,magic” part.

» Who wants to play with state machines ?

Thank you !

Josef Kufner

kufnejos@fel.cvut.cz

To be continued . ..

	Self-generating Programs – Cascade of the Blocks
	History
	Introduction
	Cascade

	State Machine Abstraction Layer
	The End

