
Part I:Self-generating Programs – Cascade of the Blocks
Part II:State Machine Abstraction Layer

Josef Kufner
kufnejos@fel.cvut.cz

April 2014



Part I
Self-generating Programs – Cascadeof the Blocks



Connecting components together
I Unix pipeline: (Douglas McIlroy, 1964/1973)

cat | grep | sort | sed
I Isolated programs
I Uniform interfaces – input and output (stdio)
I Single data stream
I Static structure



Connecting components together
I Function Blocks: (IEC 61131, 1992)

 A  B 

 C 

 D 

I Isolated blocks
I Uniform interfaces – inputs and outputs
I Multiple data streams
I Static structure
I Feedback is possible



What if . . .

Data streams + Static structure

⇓

Static data + Dynamic structure
?



What if . . .

Data streams + Static structure
⇓

Static data + Dynamic structure
?



Static data + Dynamic structure = ?
I Preserved features:

I Isolated blocks
I Uniform interfaces – inputs and outputs

I Static data?
I Outputs can be set only once.
I Inputs receive only a single value or an object.

I Dynamic structure?
I Blocks are created during evaluation.
I New blocks may be connected to the current structure.



Static data + Dynamic structure = ?
I Preserved features:

I Isolated blocks
I Uniform interfaces – inputs and outputs

I Static data?
I Outputs can be set only once.
I Inputs receive only a single value or an object.

I Dynamic structure?
I Blocks are created during evaluation.
I New blocks may be connected to the current structure.



Static data + Dynamic structure = ?
I Preserved features:

I Isolated blocks
I Uniform interfaces – inputs and outputs

I Static data?
I Outputs can be set only once.
I Inputs receive only a single value or an object.

I Dynamic structure?
I Blocks are created during evaluation.
I New blocks may be connected to the current structure.



The Cascade
I The Cascade is a dynamic acyclic structure built of blocks.

get
core/in/get

id

load
article/load

id id

enable article

done

f orm
article/edit_form

article article

enable form

done

update
article/update

id done

article

enable

show_f orm
form/show

form done

enable (:not)

I Values are passed from outputs of one block to inputs of another.The data are transferred as a single wave – no streams.



Evaluation of the Cascade
I Connections between blocks = Precedence constraints.

I Output must be set before input is read.
I Execution order is determined automatically.

I Programmer does not have to specify it explicitly – less work,more flexible cascade constructing.

get
core/in/get

id

load
article/load

id id

enable article

done

f orm
article/edit_form

article article

enable form

done

update
article/update

id done

article

enable

show_f orm
form/show

form done

enable (:not)

g ≺ g , l ≺ l , . . . , g ≺ l , l ≺ u, l ≺ f , f ≺ u, f ≺ s=⇒ g ≺ g ≺ l ≺ l ≺ f ≺ f ≺ u ≺ u ≺ s ≺ s



The Block
I Block is an OOP object with

main() method.
I Type (class)
I ID of the instance

I Life time of the block:1. Read inputs.2. Process data.3. Set outputs.
I Strict encapsulation:Blocks do not know their connections.
I Similar to Function block, but semantics isdifferent.

ID
block/type

a x

b y

z

note or error



The Growing Cascade
I Blocks can insert additional blocks and connect their inputs.

Before execution of A:
.A

D

in1 out

in2

A

in1 out

in2

A ≺ D(connection into namespace of A)

After:
.A

B

in1 out

in2

C

in1 out

in2

D

in1 out

in2

A

in1 out

in2



Namespaces
I Each block can insert blocks into its own namespace only.
I Connections can be established across all namespaces.
I Recursive nesting is allowed. – The cascade is a 3D structure.

.A

A

in1 out1

in2 out2

B

in1 out

in2

C

in1 out

in2

D

in1 out

in2

Block A inserted blocks B and C, and requested forward of the C’s output.



Output forwarding
I Return value replacement – nothing is going back in the cascade.
I Scope of forwarding is not limited by namespace.

Actual cascade:
.A

A

in1 out1

in2 out2

B

in1 out

in2

C

in1 out

in2

D

in1 out

in2

Idea of nesting:

.A

A

in1 out1

in2 out2

B

in1 out

in2

C

in1 out

in2

D

in1 out

in2

Block A inserted blocks B and C, and requested forward of the C’s output.



Cascade features
I Automated visualization:

I Cascade snapshot represents the entire previous evaluation.
I Easy to render automatically using Graphviz.
I Debugger in a single picture.

I Data flow orientation:
I Modelling data paths instead of data types or algorithms.
I Cascade says what happens to data, not how.
I Details are contained in blocks.

I Strict block encapsulation and unified API
I Block can be replaced, cascade reconfigured.
I Any input can be connected to any output (if it makes sense).
I Higher code reusability. Limited scope for bugs.
I Side-effects :(



Cascade features
I Automated visualization:

I Cascade snapshot represents the entire previous evaluation.
I Easy to render automatically using Graphviz.
I Debugger in a single picture.

I Data flow orientation:
I Modelling data paths instead of data types or algorithms.
I Cascade says what happens to data, not how.
I Details are contained in blocks.

I Strict block encapsulation and unified API
I Block can be replaced, cascade reconfigured.
I Any input can be connected to any output (if it makes sense).
I Higher code reusability. Limited scope for bugs.
I Side-effects :(



Cascade features
I Automated visualization:

I Cascade snapshot represents the entire previous evaluation.
I Easy to render automatically using Graphviz.
I Debugger in a single picture.

I Data flow orientation:
I Modelling data paths instead of data types or algorithms.
I Cascade says what happens to data, not how.
I Details are contained in blocks.

I Strict block encapsulation and unified API
I Block can be replaced, cascade reconfigured.
I Any input can be connected to any output (if it makes sense).
I Higher code reusability. Limited scope for bugs.
I Side-effects :(



Cascade composition
I Cascade is:

I simple data structure
I declarative
I machine-friendly

I Cascade is designed to be generated on-the-fly.
I Ready for sophisticated composition mechanisms.

I More in Part II.



Cascade composition
I Cascade is:

I simple data structure
I declarative
I machine-friendly

I Cascade is designed to be generated on-the-fly.
I Ready for sophisticated composition mechanisms.

I More in Part II.



Cascade usage
I Designed for non-interactive applications.

I HTTP server:One HTTP request = one cascade evaluation.

I It is hard to implement cycles.
I Usualy not required in real applications.
I Pass lists and iterators between blocks to process collections.



Cascade usage
I Designed for non-interactive applications.

I HTTP server:One HTTP request = one cascade evaluation.
I It is hard to implement cycles.

I Usualy not required in real applications.
I Pass lists and iterators between blocks to process collections.



Use Case: Web Framework
I Cascade was created as a core of a web framework.
I Cascade replaced a traditional controller in MVC.
I Blocks can produce output fragments, which are composed into aweb page after the cascade evaluation is finished.
I Push architecture.

Cascade

Front Controller

Model

Config.
files

HTTP
request

Templating
engine

(View)

HTTP
response

(HTML page)



Framework Features
I Real-time fully automatic cascade visualization:

I Every web page can contain an automatically generated diagramof the cascade which generated the page (Graphviz).
I Easy to trace where data come from and what happened to them.

I Visual cascade editor
I User-friendly web application composition – both logic and layout.

I Plugin infrastructure
I Plugin is a library of blocks + config.
I Good code reusability (prototypes).

I Generated block documentation
I Fully integrated into an application.
I Less code to remember.



Movie

I Automaticaly generated movie !
I Shows how the cascade is evaluated.
I Silent movie only. Sorry.



Movie – the result



Current Research
I Automatic cascade composition from incomplete specification.

I Combining existing implementations, relevant metadata, andvarious forms of user input to generate a new implementation.
I Cascade is designed for automated processing:

I Simple data structures.
I Everything is declarative and machine-friendly.

Customer←→ SoftwareAnalyst ←→ TrainedMonkey −→ Framework(PHP)︸ ︷︷ ︸
To be replaced.



End of Part I
Josef Kufner

kufnejos@fel.cvut.cz

Framework demo:
http://cascade.frozen-doe.net/

Comming soon: Magic vs. Trained monkeys

http://cascade.frozen-doe.net/


Part II
State Machine Abstraction Layer



The Big Picture
 Model definition 

 Smalldb 

 Single 
 web page 

 Cascade 

 Magic 
??? 

 Existing programs 
 ??? 

 User Interface 
 definition 

Future research



What is Smalldb?
I Smalldb is a framework for creating models in MVC-likeapplications.

I But it is not only a model.
I Smalldb is RESTful.

I But a little different from usual REST applications with HTTP API.
I Smalldb use state machines to describe the model . . .



REST Resource as a State Machine

exists

 create 
 (HTTP POST) 

 modify 
 (HTTP PUT) 

 delete 
 (HTTP DELETE) 

I How to undelete a resource?
I How to manage long-running tasks?
I What if we add more transitions?



REST Resource as a State Machine

exists

 create 
 (HTTP POST) 

 modify 
 (HTTP PUT) 

 delete 
 (HTTP DELETE) 

I How to undelete a resource?
I How to manage long-running tasks?

I What if we add more transitions?



REST Resource as a State Machine

exists

 create 
 (HTTP POST) 

 modify 
 (HTTP PUT) 

 delete 
 (HTTP DELETE) 

I How to undelete a resource?
I How to manage long-running tasks?
I What if we add more transitions?



Example: An article in a content management system

writing

 create 

 edit  publish 

published

 publish 

deleted

 delete 

 hide 

 edit 

 delete 

 undelete 

 undelete 



REST API for Smalldb
I Required operations:1. Read state (HTTP GET)2. Invoke a transition (HTTP POST)

I transition name
I parameters

I REST is not only HTTP API.
I Uniform interface – Resources, URL
I Hypermedia – Resources linking to each other.
I Stateless communication

I Smalldb preserves REST features.
I Compatible with good old HTML forms.

I No complex clients needed.



REST API for Smalldb
I Required operations:1. Read state (HTTP GET)2. Invoke a transition (HTTP POST)

I transition name
I parameters

I REST is not only HTTP API.
I Uniform interface – Resources, URL
I Hypermedia – Resources linking to each other.
I Stateless communication

I Smalldb preserves REST features.
I Compatible with good old HTML forms.

I No complex clients needed.



REST API for Smalldb
I Required operations:1. Read state (HTTP GET)2. Invoke a transition (HTTP POST)

I transition name
I parameters

I REST is not only HTTP API.
I Uniform interface – Resources, URL
I Hypermedia – Resources linking to each other.
I Stateless communication

I Smalldb preserves REST features.
I Compatible with good old HTML forms.

I No complex clients needed.



Example: An article in a content management system

writing

 create 

 edit  publish 

published

 publish 

deleted

 delete 

 hide 

 edit 

 delete 

 undelete 

 undelete 

I What self-loops do?



Finite automaton + Kripke structure
I Self-loops may change the state!

I State machine has properties (key–value).
I State is function of the properties.

I Self-loop is transition between sub-states within the state.



Finite automaton + Kripke structure
I Self-loops may change the state!
I State machine has properties (key–value).
I State is function of the properties.

I Self-loop is transition between sub-states within the state.



Finite automaton + Kripke structure
I Self-loops may change the state!
I State machine has properties (key–value).
I State is function of the properties.

I Self-loop is transition between sub-states within the state.



Definition of Smalldb State Machine . . . see the paper.
Smalldb state machine is modified non-deterministic parametric finite automaton,defined as a tuple (Q , P , s , P0 , Σ, Λ, M , α , δ ), where:

I Q is finite set of states.
I P is set of named properties. P∗ is (possibly infinite) set of all possible valuesof P . Pt is state of these properties in time t . Pt ∈ P∗ .
I s is state function s(Pt ) 7→ q, where q ∈ Q , Pt ∈ P∗ .
I P0 is set of initial values of properties P , P0 ∈ P∗ .
I Σ is set of parametrized input events.
I Λ is set of parametrized output events (optional).
I M is finite set of methods: m(Pt , ein) 7→ (Pt+1, eout ), where Pt , Pt+1 ∈ P∗ ,

m ∈ M , ein ∈ Σ, eout ∈ Λ.
I α is assertion function: α(qt , m) 7→ Qt+1 , where qt ∈ Q , Qt+1 ⊂ Q , ein ∈ Σ.

∀m ∈ M : s(Pt+1) ∈ α(s(Pt ), m)⇔ (∃ein : m(Pt , ein) 7→ (Pt+1, eout ))
I δ is transition function: δ (qt , ein, u) 7→ m, where qt ∈ Q , ein ∈ Σ, m ∈ M ,and u represents current user’s permissions and/or other session-relatedattributes.



Key features of Smalldb State Machine (1/2)
I Nondeterministic parametric finite automaton.

I . . . finite automaton
I Finite set of states and transitions.
I Single initial state.

I . . . parametric . . .
I State is a function of named properties (key–value structure).
I State function is one-way mapping.

I Nondeterministic . . .
I Multiple transition of the same name.
I Transition may fail, or it depends on unknown variables.
I Equivalent to deterministic automaton with guards.



Key features of Smalldb State Machine (1/2)
I Nondeterministic parametric finite automaton.
I . . . finite automaton

I Finite set of states and transitions.
I Single initial state.

I . . . parametric . . .
I State is a function of named properties (key–value structure).
I State function is one-way mapping.

I Nondeterministic . . .
I Multiple transition of the same name.
I Transition may fail, or it depends on unknown variables.
I Equivalent to deterministic automaton with guards.



Key features of Smalldb State Machine (1/2)
I Nondeterministic parametric finite automaton.
I . . . finite automaton

I Finite set of states and transitions.
I Single initial state.

I . . . parametric . . .
I State is a function of named properties (key–value structure).
I State function is one-way mapping.

I Nondeterministic . . .
I Multiple transition of the same name.
I Transition may fail, or it depends on unknown variables.
I Equivalent to deterministic automaton with guards.



Key features of Smalldb State Machine (1/2)
I Nondeterministic parametric finite automaton.
I . . . finite automaton

I Finite set of states and transitions.
I Single initial state.

I . . . parametric . . .
I State is a function of named properties (key–value structure).
I State function is one-way mapping.

I Nondeterministic . . .
I Multiple transition of the same name.
I Transition may fail, or it depends on unknown variables.
I Equivalent to deterministic automaton with guards.



Correctness and Provability
I Smalldb separates formally provable definition and a messy codewith transition implementations.

I Formal model (state machine definition) is part of implementation.
I Almost no space for mistakes while converting formal model toa real code.

I Easy to visualize.
I Graphviz (again)
I Costumer may understand state diagram and confirm validity.(No chance to do so with source code.)
I Easier for new programmers to start working on an old code.



Correctness and Provability
I Smalldb separates formally provable definition and a messy codewith transition implementations.
I Formal model (state machine definition) is part of implementation.

I Almost no space for mistakes while converting formal model toa real code.

I Easy to visualize.
I Graphviz (again)
I Costumer may understand state diagram and confirm validity.(No chance to do so with source code.)
I Easier for new programmers to start working on an old code.



Correctness and Provability
I Smalldb separates formally provable definition and a messy codewith transition implementations.
I Formal model (state machine definition) is part of implementation.

I Almost no space for mistakes while converting formal model toa real code.
I Easy to visualize.

I Graphviz (again)
I Costumer may understand state diagram and confirm validity.(No chance to do so with source code.)
I Easier for new programmers to start working on an old code.



Key features of Smalldb State Machine (2/2)
I Implementation of a transition?

I Transition is implemented in code as OOP method.
I State machine validates a state after a transition is finishedusing assertion function.
I Messy code is packed and supervised.
I Machine implementation is well tested.
I Machine definition can be formally verified.

What could go wrong?



Key features of Smalldb State Machine (2/2)
I Implementation of a transition?
I Transition is implemented in code as OOP method.
I State machine validates a state after a transition is finishedusing assertion function.

I Messy code is packed and supervised.
I Machine implementation is well tested.
I Machine definition can be formally verified.

What could go wrong?



Key features of Smalldb State Machine (2/2)
I Implementation of a transition?
I Transition is implemented in code as OOP method.
I State machine validates a state after a transition is finishedusing assertion function.
I Messy code is packed and supervised.
I Machine implementation is well tested.
I Machine definition can be formally verified.

What could go wrong?



Metadata
I State machine definition can be easily extended with relatedmetadata.
I Convenient „Single Source of Truth“.

I Parts of application may be generated from these metadata.
I User interface, . . .

I Access control – per transition.



Metadata
I State machine definition can be easily extended with relatedmetadata.
I Convenient „Single Source of Truth“.
I Parts of application may be generated from these metadata.

I User interface, . . .
I Access control – per transition.



Interaction with outter world

I Cooperating state machines can be modeled and formally verified.
I Other entities in a bussiness process may be modeled as a statemachines too.
I Possibility to formally verify entire bussiness process.



Future research

I Smalldb was created as a source of metadata for the „magic“ part.
I Who wants to play with state machines ?



Thank you !
Josef Kufner

kufnejos@fel.cvut.cz

To be continued . . .


	Self-generating Programs – Cascade of the Blocks 
	History
	Introduction
	Cascade

	State Machine Abstraction Layer
	The End

